--- GETS HTML ON SCROLLABLE ---

chrome_options = webdriver.ChromeOptions()
chrome_options.add_argument("--incognito")
chrome_options.add_argument('headless')

#ChromeDriverManager().install()

driver = webdriver.Chrome()
driver.get('https://nextgenstats.nfl.com/charts/list/pass/team/2022/")
SCROLL_PAUSE_TIME = 1

last _height = driver.execute_script("return document.body.scrollHeight")
scroll limit = 100

count = ©

while True and count < scroll limit:
driver.execute_script("window.scrollTo(@, document.body.scrollHeight);")
sleep(SCROLL_PAUSE_TIME)
new_height = driver.execute_script("return document.body.scrollHeight")
if new_height == last_height:
| break
last_height = new_height
count += 1

sleep(2)

html = driver.page_source

driver.close()
soup = BeautifulSoup(html, "lxml')

The https://nextgenstats.nfl.com/charts/list/pass webpage is scrollable and does not load all at

once. The above code opens the link, scrolls to the bottom, and then copies the HTML

containing the metadata for each image. As a result, all of the webpage can be scraped at once.

https://nextgenstats.nfl.com/charts/list/pass

--- FUNCTIONS ---

def line_intersection(linel, line2):
xdiff = (linel[e][@] - linel[1][@], line2[@][@] - line2[1][e])
ydiff = (lineil[@][1] - linel[1][1], line2[@][1] - line2[1][1])

def det(a, b):
return a[@] * b[1] - a[1] * b[e]

= det(xdiff, ydiff)
(det(*1linel), det(*1line2))
det(d, xdiff) / div
det(d, ydiff) / div

return x, y

PointsInCircum(start, end, n=18):
return np.array([(np.cos(x), np.sin(x)) for x in np.arange(start, end, (end-start)/n)])

smooth_convex(data, dist, num):
Store curve points
smoothed_data = []
for i in range(1l, len(data) + 1):
Rename desired points
p, pl, pr = data[i % len(data)], data[i - 1], data[(i + 1) % len(data)]
Calculate distances between points
deltas = np.array((pl, pr)) - p
Calculate the perpendicular slopes
perp_slopes = -deltas[:, @] / deltas[:, 1]
Calculate the ratio of the distance between the points to start the curve
t = dist/np.sum(deltas**2, axis=1)**@.5
if any(t > ©.5): # Limit the curve to start no further than half the line
| t /= np.max(t)*2
Find the new end points of the straight lights
new_ends = np.array((pl*t[e], pr*t[1])) + np.array((p*(1-t[e]), p*(1-t[1])))
Calculate the intersection of the perpendicular slopes at the new end points
center = line_intersection((new_ends[@], new_ends[@] + np.array([1, perp_slopes[@]])),
| ‘ ‘ | | | | (new_ends[1], new_ends[1] + np.array([1, perp_slopes[1]])))
Calculate the radius from the center to new end points
radius = sum((new_ends[@] - center)**2)**9. 5

Calculate radians of the start and end of the curve
rad_s, rad_e = np.arctan(perp_slopes)
Adjust depending on placement of the points
if deltas[1, 1] < e:
| rad_e += np.pi
if deltas[e, 1] > e:
| rad_s += np.pi
if deltas[e, 1] > @ and deltas[1, 1] > @:
| rad_e += 2*np.pi
Find the points along the curve in the determined radian bounds
curve = PointsInCircum(rad_s, rad_e, n=num) * radius + center
Store curves
smoothed_data.append(curve)
return np.reshape(smoothed_data, (-1, 2))

def truncate_colormap(cmap, minval=6.8, maxval=1.8, n=188):
new_cmap = mcolors.LinearSegmentedColormap.from_list(
"trunc({n},{a:.2f},{b:.2f}) "' .format(n=cmap.name, a=minval, b=maxval),
cmap(np.linspace(minval, maxval, n)))
return new_cmap

The above code was written by my friend Kyle Hassold. He can be reached at:

https://www.linkedin.com/in/kyle-hassold/

This code’s function is to round the sharp edges on the topographic maps. As you can see by the
produced images, it works. Fortunately, Kyle does a much better job at commenting his code
than | do. Please refer to the image above (or to Kyle directly) for commentary on this portion of

the project.

COLLECT DATA FROM PICTURES

data = []

dataDict = {}

start = []

end = []

chartsHTML = []

--- TEXT FROM IMAGE ---

f = open(’ NHTML.txt', 'r")

lines = f.read()

parse = BeautifulSoup(lines, "1xml").prettify()

for r in re.finditer('<ul class="chart-stats-line">|<!-- -->\ s*<div class="chart-image">", parse):
| start.append(r)

for r in re.finditer('<p class="player-bio">|NFL Enterprises LLC', parse):

| end.append(r)

end.pop(@)

G RTS --- #
for i in range(len(start)):
chartsHTML.append(str([parse[start[i].span()[@]:end[i].span()[1]]]))
chartsHTML = chartsHTML[26:]

Now that the HTML has been collected, it needs to be parsed. The TEXT FROM IMAGE
section separates all of the charts” HTML from the rest of the code. Each charts’ HTML is stored
separately from one another. The GETS CHARTS section removes the 26 playoff charts stored

in the website, as they do not contain metadata like the rest.

https://www.linkedin.com/in/kyle-hassold/

for number in [z for z in range(len(chartsHTML)) if z != 374]:
print(number)
url = ‘imag jpeg’.format(number)
white_count
green_counts = []
blue_counts = []
red_counts = []
white_qualifier = @
green_qualifier = @
blue_qualifier = @
red_qualifier = ©
text = []
name = []
green_kmeans = @
white_kmeans = @
blue_kmeans = ©
red_kmeans = 0

GETS METADATA

for r in re.finditer('\d+', chartsHTML[number]):

| text.append(int(r.group(0)))

text = text[:5]

print(text)

for r in .finditer('<img alt=".+ Pass Chart" ', chartsHTML[number]):
name.append(str(r.group(@)))

print(name)

name = name[@].split('"")

name = name[1].split("' ')

week = name[3]

name name[@] + ' ' + name[1]

Now the images are cycled through by number. Their order in the HTML matches with the order
that they are saved. The images themselves could not be scraped like the HTML as the NFL
blocks these actions. Image 374 is skipped, as it is just blank. One image at a time, the numbers
are removed from the HTML, followed by the player’s name. This collected data is then

separated stat-by-stat into an array.

- RESHAPE INTC E AND i
np.float32([(115, @), (485, @), (-35, 325), (635, 325)]) #NW, NE, SW, SE
np.float32([(@, 600), (456.857142857, 600), (@, 0), (456.857142857, 0)])
h, w = im.shape[:2]
M = cv.getPerspectiveTransform(src, dst)
im = cv.warpPerspective(im, M, (w, h), flags=cv.INTER_LINEAR)
im = cv.flip(im, @)
im im[@:600 ,08:457]
im = cv.rectangle(im, (@, 507), (20, 493), (@, @, @), -1)
im cv.rectangle(im, (457, 507), (435, 493), (e, @, @), -1)

The image associated with the present number is opened. First the original images are cropped.

They also have a warped perspective which must be taken care of via a keystone correction.

GREEN THRESHOLDING
if (text[@] - text[3]) != @:
green_lower = np.array([6@, 80, 48])
green_upper = np.array([13@, 255, 75])
green = cv.inRange(im, green_lower, green_upper)
green_text = text[@] - text[3]

--- GREEN ELIMINATE NOISE ---
rows,cols = green.shape
green_threshold = []
for y in range(rows):
for x in range(cols):
if green[y, x] == 255:
green_threshold.append([x, y])
green_threshold = np.array(green_threshold)
if len(green_threshold) != @:
db = DBSCAN(eps=4, min_samples=18).fit(green_threshold)
labels = db.labels_
green_dbscan = green_threshold[labels != -1]

GREEN K-MEZ£ _LUSTERING
if len(green_dbscan) != @:
green_kmeans = KMeans(n_clusters = green_text, init = "k-means++").fit(green_dbscan)

Now the more complex image analysis begins. Above is how the green dots (completions) are
located. Other colors follow similar processes. First, a check is run to make sure that any green
dots exist at all. A color threshold is then run on the image, selecting all green pixels. Green
pixels are defined as any pixel with an RGB value such that red is 60-130, green is 80-255, and
blue is 40-75. A clustering algorithm is then run on all the pixels. It detects groups of green
pixels, eliminating noise and extraneous pixels. Next, using the meta data collected, a k-nearest
neighbors algorithm is run where k is the total number of completed passes minus the
touchdowns. Colors that need to be double checked due to a potentially incorrect k value then

undergo a variance calculation, however green does not need this.

if green_kmeans != @:

‘ in ra len(green_kmeans.cluster_centers_)):

data.append((name, week, green_kmeans.cluster_centers_[:, @][i], green_kmeans.cluster_centers_[:, 1][i], 'Complete'))
if white_kmeans != @:
n(white_kmeans.cluster_centers_)):
data.append((name, week, white kmeans.cluster_centers [:, @][i], white_kmeans.cluster_centers_[:, 1][i], 'Incomplete'))
if blue_kmeans :

‘ F’-A_l‘" i i
len(red_kmeans.cluster_centers_)):
data.append((name, week, red_kmeans.cluster_centers_[:, @][i], red_kmeans.cluster_centers_[:, 1][i], 'Interception'))

for item in
if (item in dataDict):
| databDict[item] += 1

ataDict[item] = 1
After all the colors undergo their data collection processes, they can optionally be plotted on a

scatter plot. The data is then stored for topographic mapping.

)r nme in names:
filel = open("D ona
DataDict = pickle.load(open(“"Dictio
filel.close()
df = pd.Seri ataDict).reset_index()
df.columns ame"* v, N

df = df[(df['r] == nme)].sort_values(by=['name', 'type'
y'] * (65/600)) + 65) - 10
x'] * (53.333333/457)) - (53.333333/2)

colors ple y 'Incomplete': 'white', 'Touchdown': '
)

fig, ax = plt.subplots()

ax.imshow(pic, extent=[-(53.333333/2), (53.333333/2), -10, 55])

ax.scatter(df['x'], df), = dEf’] .map(colors))
ax.set_title(df[].]

path = 'test/' + str(count) + 'a
ax.figure.savefig(path)

layers = list(range(3, 19, 2))

j=0

dist = 1.75

cmap = cl.Linear entedColormap.from_list("", ["
colors = cmap(np.linspace(@, 1, len(layers)))

', "mediumorchid", "d: a", 'indigo'])

pic = plt.imread('images/field.png')

fig, ax = plt.subplots()

ax.imshow(pic, extent=[-(53.333333/2), (53.333333/2), -1, 55])
ax.set_title(df['n].iloc[@])

The names array stores the names of any quarterbacks whose mappings you wish to display.
First, the collected data is opened and stored in a dataframe. The X and Y data is scaled and
reflected across a custom y-axis (the line of scrimmage). The same is done with a blank image of
the next gen statistics’ football field background, which is to double as a background for these

new graphics. A custom color mapping is set as the map’s title is set to the player’s name.

for i in list(range(@, len(layers), 1)):
locations = df[['x", 'y']]
X = locations

#

db = DBSCAN(eps=dist, min_samples=layers[i]).fit(X)

clusters = pd.DataFrame(db.fit_predict(locations))
labels = db.labels_
unique_labels = set(labels)
core_samples_mask = np.zeros_like(labels, dtype=bool)
core_samples_mask[db.core_sample_indices_] = True
for k in unique_labels:
if k 1= -1:
class_member_mask = labels == k
Xy = X[class_member_mask]
if len(xy) »= layers[i]:
hull = ConvexHull(xy)
if hull.volume > ©.0015:
xy_smooth = smooth_convex(xy.iloc[hull.vertices].to_numpy(), 1, 1@)
ax.fill(xy_smooth[:, @], xy_smooth[:, 1], ¢ = colors[i], alpha=1)
path = "test/' + str(count) + 'b.png'
ax.figure.savefig(path)
count += 1

Finally, the data is graphed topographically. A clustering algorithm is run at each layer, with
increasing density. A convex hull is calculated on each hull. Convex hulls take a cluster of points
and form a perimeter around them, turning them into a shape. Kyle’s algorithm rounds the sharp
vertexes, giving the shapes a smooth look. They layers are plotted as they are calculated, from
largest (least dense) to smallest (most dense). Finally, the images are stored and the charts are

completed.

